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Abstract  Faccal bacterial counts were performed on water samples from Sydney beaches. In addition. beach pollution
was visually assessed by beach inspectors on a daily basis using a 5-point ratings scaie at the same beaches. The bacterial
counts were stmmed over all beaches to produce an irregularly spaced daily total count. The surveyed visual poliution
scores were averaged over all beaches to produce a daily time series of visual potlution for Sydney beaches. The total
hactertal counts were modelled as Normal random variables via a generalised linear mode! in which the independent
variables entailed a transfer funcion of the average daily visual pollution scores. The use of a generalised linear mode!
with a logarithmic link function permitted the untransformed bacterial counts to be modelled without the more commonly
performed explicit fogarithmic transformation. The model explained approximately three quarters of the vanability in the
raw bacterial counts. BEarlier work (Jellett 1996) reported a relationship between the visual pollution scores and wind, rain,
ocean curreni and temperature, establishing the usefuliness of the visual ratings as a measure of pollution. The curreat
work establishes a link between visuaily assessed pollution and the cccurrence of faccal bacteria in the water. The paper
also describes the method which was employed to simultaneously estimate the transfer function parameters for filtering
the visual ratings together with the generalised linear model.

1. INTRODUCTION model residuals. The linear transfer function output, x,
. . . o . ~ H ’) '}"0, . o e A
Bacterial counts for (aecal coliforms and faccal strepto- was Lortjpuled fro?"n et]ualaon(w}.}{ctarc 2.'“’?10“5{!]3 hited
o . ; o mode! from the right hand side of equation (1} together
cocel were performed on water samples which were ) o g S
. R . v with the observed total bacterial counts. Figures 3 and 4
collected approximalely every second day from 34 Sydney . ey P CE .
-~ L . o . summarise the effect of the transfer function eguation (2}
beaches. In addition. beach pollution was assessed vis- . . J . -
in the model. Figure 5 shows the modef residuals, ¢, {rom

ualty by beach inspectors on a daily basis using a S-point
ratings scale at the same beaches. The time period of the
maodelled data covered | July 1991 1o 30 April 1992 with
the bacterial counts as the dependent variable and the
visual pollution scores as the independent variable, The
hacterial counts were summed aver all beaches to produce
an irregutarly spaced daily total count with almost half the
record missing. The surveyed visual potlution scores were
averaged over all beaches to produce a daily time series
of visual polivtion for Sydney beaches with no missing
values {Figure 1), In 1996 Jellett reported a relationship
hetween the visual poliution scores and wind, rain, ocean
current and temperature, establishing the usefullness of
the visuat ratings as o measure of potlution. The current
work establishes o link between visually assessed pollu-
tion and the occurrence of laccal bacteria in the water
which was sampled at the beaches (Figure 2).

equation ().

Figure 3 shows hypothetical bacterial counts calculated
from equations (1) and (2} corresponding fo ene unit of
average visual pollution on day 1 and zero on other days.
Theeffectof such a unit will be to multiply bacterial levels
to produce the levels shown day by day in Figure 3. Thus
bacterial levels will peak on the same day and then rapidty
settle back fo previous levels, Likewise Figure 4 shows
hypothetical bacterial counts calculated from equations
(1}and (2) but corresponding to one unit of visual potluiion
on day | and succeeding days and zero prior to day |
Figure 4 shows that. after an initial peak, bacterial levels
willsettle down to a steady factor 0f 3.3 increase compared
with day zero.

The model * value was 71%. Thus the correlation between
the total bacterial counts and the average daily coastal
2. RESULTS visual ratings was 0.84. This is remarkably high given the
small number of estimated parameters. the large number
of missing values and the fact that the visual pollution
scores amounted to a daily survey which was completed

The estimated model equations are

yeEoxple o)+ o (h by separate beach inspectors. The result suggests a com-

mon seurce for both the visual poliution and the bulk of

NoEman, Ry hby (2) the bacterial pollution. Earlier work suggested that the

. source is largely from the sea since the visuai pollution

where v, are the total observed bacterial counts and v, are was found to Be associated with onshore winds and

the observed average daily coastal visual poliution ratings currenis (Jeilett 1996) as well as rainfall. Rainfall could

(Figure 1), The a. b and ¢ terms i equations (1) and (2) produce an increase through direct urban runof{ or through
were estimated and are given in Table 1 while ¢, are the the urban drainage/sewerage system as well as the sea.
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Figure 1: Daily Coastal Average Visual Rating
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Table I: Fitted Model (R-Squared=71%)

Modelr Parameter | Standard | Description
Term Estimats Error
¢ 771224 0.21738 { Constant
o 2124531 0.23109 ] Lag 0 Visual Rating |
b, -1.21813 0.43255 | Lag 3 Visual Rating
a, G.24040 7 0.00879 | Lag? Filtered Visual
Hating
3. PARAMETER ESTIMATION

Equation (1is aenlinear and 1s of a kind which is common
in the modelling of discrete counts (Bishop et al 1980).
The GLIM language was used {Nelder and Wedderburn
1972y, Equation (2} is a transfer function and is common
in time series models (Box and Jenkins 1976, Brockwell
ard Davis [991. Young 1984). Thus the parameter esti-
mation method below combined two methodologies,
generalised finear models and transfer function models,
The method was also used by Jellett (1996).

The data covered 305 days but only 170 bacterial counts
were observed. having been measured roughly every
second day. Eguation {2), being a recursive diflerence
equalion. relies on an unbroken data record for its
computation. This was not a problem since there were no
missing values in the visual pollution data v, The GLIM
fanguage. which was used Lo estimate the model, does not
casily support recursive cafculations down a column of
numbers. Besides combining methodologies, another
useluf feature of the method which is described below is
that it does not involve recursive evaluation of x, in
equation (21

3.1 Herated Regression On Lapgged Fitted Values

Firstly consider the estimation of the linear transfer
function model. eguations (3) and (2),

3)
The method invelves determining the ¢, & and ¢ parameter
estimaies in these model equations by carrying out an
Herative sequence of multiple linear regressions of a
dependent variable. v,. on the terms on the right hand side
of equation (4). Equation {4) is a linear regression to
determine the parameter estimales with the superscript, 7,
Equation (3 was then cafcuiated with parameter estimates
from the I-th regression. Quantities with the superscript,
i-1, are from the preceding iteration.

o i [N [ [
YEC A, b+ e,

&)

When the parameter estimates and mode! outputs have
cConverged.

o -t [ I N
A =ape b ey
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(6)

and equation (5) witl be the same as the recursive differ-
ence equation, (2} To initialise eguations (43 and (5),

(8)

equation (7) was used. 1f this is not acceptable to a
regression package then equation {8) would be satisfac-
tory. Equation (8) could not be used here because of the
presence of missing values. At each iteration the vector x/
could be viewed as the output of a discrete vector transfer
function which, as the parameler estimates converge, has
constant inputs on the right hand side of equation (5). The
vector transfer function output in equation (3) has the
superscript, 1, as the discrete sequencing variable while ¢
ruas over elements of the vector as a dummy variable.
Hence each element of the output vector will converge to
asteady state, provided ais less than one in absoluie value.

3.2 Combination with Generalised Linear bModel

The scheme of section 3.1 will leadto estimates for transfer
function models, for example, equations (3) and (). The
method s easily adaptable to cover multiple transler
function models (Jeliett 1996) or time-varying regressions
(JeHett 1997). Because each iteration consists of a multiple
lincar regression, it is a simple matter to replace that step
with another type of model which utilises a dependent
variable and independent variables. This is the case with
generatised linear models of which equation (1) is an
example. Thus all that needed to be changed in the GLIM
language was to specify equation (9) as the model form in
order to estimate equations (1) and (2) rather than the
muitiple linear regression equation {(4). Hauation (3)
remains unchanged.

)

.- N i i For oyt .
ye=exple fax D +hyv, + by, e,

3.3 Statistical Properties of The Estimates

Study of the nonlinear equations which are satisfied by
the parameter estimates at convergence ol equations {4)
and (5) reveal that the method of section 3.1 is an example
of an iterative instrumental variable estimator. (Young
1984}, and will have satisfactory bias and efficiency
properties following from the orthogonality of x, and ¢, at
each iteration of the regression model {4}, The method of
computing both the estimates and the model output
appears to be new. The estimates produced by equations
(4) and (5} are related to those for simplified refined
instrumental variables, except that the model outputs are
not pre-filtered here and hence are not the derivatives of
the model residuals with respect to the a-parameter as is
the case with simplified refined instrumental variables
which are optimal in the sense that they produce least
squares estimates conditional upon start-up values for time
one. The method of section 3.1 is distinguished hy #s
extrerne simplicity by comparison with other time series
estimation methods and permits time series modeis to he
fitted in any software cnvironment where it is possible to
fit a sequence of regressions. The method even permits
combination with ARMA model residuals (Jelictt 19963,
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Figure 5: Model Residuals

4. CHARACTERISATION OF ESTIMATES

Consider a {irst order transfer function and white noise
model where v, and «, are observed and @, & and x, are to
he estlimated according to equations (10) and (11), leading

to model residuals, e,

¥, ma e (H3
X, =ax,_ Fha, ()
4.1 Simplified Refined Instrumental Variables

Write pre-filters as

Yom oy, +al, | 2
U = +all, | (13)
Xo=x +aX, (14)
Then the model equations (10} and (11) become

Yo=a¥ +hl +e¢ (15}
X =aX _ +hl (16)

1722

Now partially differentiate the modet residuals, e, which
are the same in cquations (10) and {15}, with respect to o
and £ Superscripts denote partial differentintion in
equations {17) and (18}

e =—X,_, (7
ef =~U, (18)
LVX,_,=aZl _X_ +bIUX | (19)
=2 p=2 r=2
IYU=aZXY U+bZIU] (20
1=2 =2 1=2

The simplified refined mstrumental variable method
determines a and b iteratively fromequations (19 and (20)
s0 that the model residuals, e, are orthogonal to the
prefittered outputs and inputs. X, and U, . respectively,
used as instrumental variables and so that the model
equations. (15} and (16) are satisfied. But in view of
equations (17) and {18) these estimates will minimise the
sum of squared residuals and so will be the same as those
computed from a nonlinear feast squares optimisation of
equations {10} and { £ 1), conditional on the start-up value
for x,.

4.2 Herated Regression on Lagged Fitied Values

The Simplified Refined Instrumental Variable Method is
due to Young, and is a straightforward application of the



Refined Instrumentat Variable Method (eg Young 1984)
in which the errors are white noise, 1f. in the Simplified
Refined Instrumental Variable Method, equations {19)
and {20) are replaced by equations (21) and {22)
respectively

1 " i
EY,,\',__JzaZ}',__Jxr_ﬁrbEU,xr“, 2h
=2 r=0 r=2
EVi=al¥, ju+b I Un o (22}
=12 r=0 =1
a " " n
Ty, =a Ly b Iux (23
r=2 t=" =2
I 1 " - .
Ty, =a L, itk (24)

t=2 e t=2

then allernative estimates will be obtained in which the
model residuals. e, are orthogonal to the unfiltered outputs
and inputs. v, , and 1, , respectively, used as instrumental
variables. The rapid convergence properties of the algo-
rithm seem to be retained and these orthogonalities are
sufficient to define the estimates which are the same as
those for estimates obtained from frerated Regression On
Lagged Fitted Values. equations (23) and (24). Thus only
the methods of computation of the estimates vary between
the equations which are satisfied at convergence, (21.22)
and (23.24h.

The orthogonalitics mentioned above will lead to
asymptotic unbiasedness and efficiency, though the esti-
mator will be slightly sub-optimal in the least squares
sense.

The reasons for use of the method of equations {23) and
(24). as applied in equations (4} and (5) and extended in
equations (9} and (3) arc

» Simplicily of concept and application.

» Nuatural extension to multiple transfer functions
with ARMA noise,

« Easy combination with gencralised linear models
of time-varying regressions.

+ No use of recursive calculations down a column of
sumbers. Only ashift or lagging of one column with
respect Lo others s required.

The model below Hlustrates the use of the method of
iterated regression on lagged fitted values and residuals
for a mubtiple transfer function model where v, #, and v,
are observed and the noise. E, follows an ARMA(LD
maodel.

vo=x, o, E

ax, b

i

D =cen Ty,

E =L  +8¢  +e¢

i

The next equation indicates a multiple linear regression
for the i-th iteration with sncceeding equations updating
the columns to be used in the next iteration of the
regression fit.

R Ry i gl i g il
y=al kb o' T R dy H O E 8 [t

i I i
x =a'x b,

i-1

i gt _of,
er""Er ¢'Eﬂ—1 9‘5;—!

5. CONCLUSION

The model results suggest a common source for both the
visual pollution and the bulk of the bacterial pollution,
Earlier work suggested that the source is largely from the
sea since the visual pollution was found to be associated
with anshore winds and currents {Jellett 1996) as well as
rainfall, Rainfall could produce an increase through direct
urban runoff or through the urban drainage/sewerage
system as well as the sea.

A new iferative instrumnenial variable estimator and
computational method was described for time series
models. The method facilitates the fitting of transfer
functions in combination with other models such as
generalised linear models or time-varying parameters. The
method also provides a simple approach to computing
estimates for multipie input, single output transfer func-
tions (Jellett 1996). The method also permits time series
modeis to be fitted using software tools which support only
regression without recursive calcutations.
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